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Abstract-This paper considers the problem of the transfer of energy due to the combined effects 
of radiation and conduction for a gas with both temperature and frequency dependent properties. 
The particular problem studied is the one-dimensional energy transfer of an absorbing, emitting 
and conducting gas. Three approximations for the frequency dependence of the absorption cocffici- 
ent are considered in detail: (1) the gray gas approximation, (2) the picket fence approximation and 
(3) a modified picket fence approximation. In addition, the thermal conductivity and the absorption 

coefficient are assumed to have a power law dependence on the temperature. 

NOMENCLATURE 

fractional width of spectral lines; 
absorption coefficient; 
gray background absorption co- 
efficient; 
temperature; 
reference temperature, taken to be Tz; 
dimensionless temperature, T *IT,’ ; 
dimensionless free stream tempera- 
ture; 
distance from left wall; 
radiation intensity; 
heat flux ; 
dimensionless heat flux, q*/aTz’; 
radiation frequency; 

exponential integral = i pm-2 e-t/r dp; 
0 

thermal conductivity; 

optical depth, 1 k dy; 
0 

3~~12; 
77; 
Stefan-Boltzmann constant; 

3ho ko -_ . 
4oT; i-3;’ 

4,; 

Avi, 
vi, 

width of ith spectral line; 
radiation frequency at center of ith 
spectral line. 

Superscripts 
(O), constants evaluated as 6 -+ 0; 
+, constants evaluated as 7W + co ; 
0, black-body radiation. 

Subscripts 
1, left wall; 
W, right wall; 

a, = 
I if left wall is being considered 
w if right wall is being considered; 

v, per unit frequency. 

INTRODUCTION 

HIGH temperature problems require the under- 
standing of the combined effects of radiation, 
conduction and convection. The study of these 
interactions has attracted much attention [l-4], 
and are quite difficult due to the complexity of 
the basic equations. Lick [5] has proposed 
approximate analytical techniques for the prob- 
lem of the transfer of energy due to the combined 
effects of radiation and conduction which give 
good agreement with the numerical solution of 
the original non-linear integro-differential equa- 
tions. 

t Assistant Professor of Mechanical Engineering. 

3G-H.M. 

Two approximations for the absorption 
coefficient were considered in detail in [5]: (1) 
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the gray gas approximation, the absorption 
coefficient assumed constant, and (2) the picket 
fence model, the absorption coefficient assumed 
to consist of an infinite number of spectral lines 
of uniform height uniformly distributed and 
superimposed on a gray background. In both 
cases the absorption coefficient and the thermal 
conductivity were assumed independent of 
temperature. The purpose of this investigation is 
to show that the procedures of [5] may be 
extended to gases having temperature as well as 
frequency dependent properties. The thermal 
conductivity and the absorption coefficient are 
assumed to have a power law dependence on the 
temperature. The two cases previously cited for 
the frequency dependence of the absorption 
coefficient are considered. Jn addition, the case 
when the frequency dependence of the absorp- 
tion coefficient consists of a finite number of 
spectral lines superimposed on a gray back- 
ground is also treated in detail. 

ONE-DIMENSIONAL ENERGY FLUX 

We consider an absorbing, emitting and con- 
ducting gas of variable temperature that is 
bounded by two infinitely plane parallel walls (see 
Fig. 1). The walls diffusely emit, absorb, and 
reflect radiation and are kept at constant tem- 
peratures TI and Tw with emissivities EL and Ed. 

The equation for the total energy flux due to 
radiation and conduction is [2, 51 

+ 2 4 sf E3 (7:) dv 
0 

- 2 [ q;u, E3 (~:t,, - 7;) dv 
J 

where Z,” is the black body spectral intensity. The 
radiative spectral flux leaving the walls is given by 

q,*l = czq: (Tz) + (1 - EZ) 
7”.. 

x L’7r J” Z,” (0 E2 (0 dt + 2 q,*, E3 (fL,>l (2) 
0 

FIG. 1. Diagram of problem. 

cc” = l to&!(Tw) + (1 - 4 

x [2?r77’ Z;(t) ES (T:,, - t) dt + 2q:*, Es (T;)] 
n 

(3) 

When the absorption coefficient can be 
approximated by the separable product, 
k(v, T) = CL(V) p(T), equation (1) may be ex- 
plicitly integrated with respect to the physical 
length variable, y, yielding [5] 

$(T*) - +(Zz) - 5 [d(Tw> - G-d1 = 1 
02 7”W 

277 
J’s 

2; (E3 (t) [I - El 

0 0 

- E317; - tj + 5E3($,- t)} dtdv 1 

where 

5 = j! P P”(Y)] dv/ 1 B [T(Y)1 dy. 
0 

Equations (2), (3) and (4) specify the complete 
problem. 

TEMPERATURE DEPENDENT PROPERTIES 

Assume the absorption coefficient is given by a 
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power law dependence on the temperature with 
no dependence on the frequency so that 

k/k,, = (T*/T;T)m (5) 

and, similarly, for the thermal conductivity 

h/ho = (T*/T;)n. (6) 

In general the actual temperature dependence 
can be adequately approximated by equations 
(5) and (6), particularly for moderate tempera- 
tures [6, 7, 8, 91. 

We note that even the crudest approximations 
for the absorption coefficient and the thermal 
conductivity, namely, constants independent of 
both the frequency and the temperature, require 
numerical methods for solution. To correct this 
difficulty, the exact kernel EZ (t) is approximated 
by the exponential function, 314 e-St/s, which 
has the same area and the same first moment 
as the exact kernel [5, also see 10, 111. Making 
this substitution in equation (4) and using 
equations (5) and (6), successive differentiations 
of the resulting equation yield the differential 
equation, 

< d2 7% f”‘l CT2 Tminil 
-____ _!A- 

m+n+l dt2 m+n+l 
- T4 = - a - /bw 5 (7) 

where 

3 ho ko 
<=4 aT;;3 c-9 

and is a measure of the importance of the heat 
conducted in comparison to the heat radiated. 

The constants a and /3 are determined by 
substituting equation (7) into equation (1) to 
give 

1 
Q =------- 

2 + 7P.u 
qw + (1 + %J42 

+ __- 

TF+~+~+ (q)/ (1 + Q,) 

] 

I 

1 
(9) 

+ (10) 

and 

(11) 
where 6 = ~7;. Thus, a, j3 and the heat flux q 
may be directly determined once the derivatives 
of the temperature and the radiative heat 
fluxes at the two walls are known. 

Boundary-layer analysis 
When radiation is the dominant mode of heat 

transfer, E < 1, Equation (7) is of boundary- 
layer type [12]. Assuming 7; < O(l), that is 
6 < 1, the free stream solution (E = 0) is 

T4 =f4 = a('3 + p(O) 7w ,$ 
(12) 

where a(O) and /3(s) are the values of a and /3 
obtained for 6 = 0. 

In the vicinity of each wall a boundary layer is 
present due to conduction heat transfer. The 
boundary-layer equation is obtained by stretch- 
ing the length variable in equation (7) such that 
the most highly differentiated term is of the 
same order of magnitude as the largest terms in 
the equation. This is obtained with the trans- 
formation [ = t/&/2 and the equation becomes 

1 d2 Tm+ntl 
_-------_4 

m+n+l dc2 
=- a(O) - /3(O) 7~ ea = -f," (13) 

where the subscript a is I for the boundary layer 
at the left wall and w for the boundary layer at 
the right wall. Integrating this equation and 
matching the free stream and boundary-layer 
solutions yields the desired derivative 

[2S (m + n + 1)]1/2 

[ 
y:G T L (Q+?n+tZ _ f;+m+n) (14) 

1 
l/2 

_f," (T,l+m+n _f;+m+n) 

I 
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Power series expansion 
When conduction is dominant, E 9 1, we 

approximate the solution by the power series 

Tm+n+l = ao + al 5 + a2 E2 --i_ ~13 t3 (1.5) 

anticipating that the temperature will be a 
slowly varying function of 5. The coefficients, 
an, are determined by substituting equation (15) 
into equation (7). 

D@ision approximation 
When the medium has a large optical depth, 

7w B 1, equation (7) may be approximated by 

;+yffi + 7-4 zzx + a+ + ,8+ 7w [ (16) 

where 

a+ = - msy;;ll + Tt (17) 

and 

T4- T; 

+ --w c- 
(18) 

L 

2,3 
--4 =&-T-n-+ 1 * 

(T?$+n+l _ Ty tn+l) 

GJ 

These equations represent the diffusion approxi- 
mation for both radiation and conduction. 

Heat J&X 
The heat flux was calculated for the conditions 

El = EW = l-0, Tl = 0.1, TW = 1.0, and 
m + n = 1, by the boundary-layer analysis, 
power series expansion and diffusion approxi- 
mation methods. The results are presented in 
Fig. 2. In addition, the temperature field can be 
calculated. 

FIG. 2. Heat flux for temperature dependent properties. 

TEMPERATURE AND FREQUENCY DEPENDENT 

PROPERTIES. I 

We maintain the same power law dependence 
on temperature for the absorption coefficient 
and for the thermal conductivity, that is, 
equation (5) and (6). In addition, for the fre- 
quency dependence we consider a gas with 
an absorption coefficient consisting of an infinite 
number of spectral lines superimposed on a 
uniform gray background. The spectral lines are 
assumed to have an absorption coefficient k 
and cover a fraction w of the spectrum, while 
the absorption coefficient of the gray back- 
ground is qk (see Fig. 3). This model can be 
considered to be an approximation to the 

a(y) JJJJi,_ 

I i 
Y 

t 

FIG. 3. Frequency dependence of absorption coefficient 
for picket fence model (I). 
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absorption of a band spectrum; see, for example 
[61-t 

D@erential equation 
Making the kernel substitution and taking 

successive differentiations yields the following 
differential equation 

E d4Tm+n+l (1 + ~~2) ~7; 1 --__ ---~- _ ____~_ 
m+n+l de4 m+n+l I 

d2 Tm+n+l 

d52 + 

,,2 ,T; Tm+n+l 

m+n+l 
(20) 

ds T4 
=a1 d52 ----aaz~~T4+~~(yl+y~~20~) 

al = w + 7j (1 - ~0) a2 = 7 (1 - w) + 7~~ w 

The constants y1 and ya and the heat flux q may 
be determined by substituting equation (20) 
into equation (1). The heat flux is given by 

(21) 

Rather than solve for the general result for 
yl and ys we determine yl and ys for each 
particular approximate solution by substituting 
the corresponding solution into equation (1). 

Diflusion approximation 
When rw B 1 and 3~~ $ 1, equation (20) may 

be approximated by 
6 2Tm+n+l 

m7)+n+1+azT4=y:+yZTwl 
where 

+ = __._Y 
Yl ~~n~+azT,4 

+= 
Y2 T2 6 

(Tm+n+l _ Tm+n+l) 
I* 

m+n+l 

+ 1 (C - Tf) 

TW 

26 

-“m+n+l 

(Tm+n+l _ Tim+n+l) w 
TW 

2az (T$ - Tt) 
+T -~ 

TW 

(24 

(23) 

(24) 

(25) 

t Plass [13] has studied various representations of the 
absorption coefficient of a band spectrum and made 
further extensions. 

Boundary-layer analysis 
When radiation dominates, E 6 1, the dif- 

ferential equation, equation (20), is of boundary- 
layer type. Assuming T; < O(l), the equation 
for the free stream temperature variation 
(6 = 0) is 

Integrating, we obtain 

(0) 
T4 E f4 = + s + ‘< 7 + bl e-P + bz e+pr 

(27) 

where p2 = az/al, y:O), yi”‘, bl and b2 are found 
by substituting equation (27) into equation (1). 

The boundary-layer equation is 

1 d4 Tm+n+l 

m+n+i ------a1 dt2 &? 
dz = () (28) 

where [ = 5/S. Integrating this equation 
yields 

[2 6 al (m + n + 1)]1/2* 

(29) 

- f,"(Ta l+m+n _fJ+m+tt)]“’ 

The equation for the heat flux is given by 

- : P (1 + 7) + 77 ~1 = (aI + :) 

(420 - m) - al CC! - f;P) 

+ m+fz+lfil+~)[(dT~:l+l)w + (30) 

+ (dT;+f+l)l] 

+ .,, (Tg+n+l _ Tzm+n+l) 

ModiJied boundary-layer analysis 
When 7w % 1 but 17 Tw < O(l), the previous 

approximations are no longer valid. We define 
a new conduction to radiation parameter, e’, 
where z’ = c/a2 N E/T. Taking the limit of 
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equation (20) as Q, + co with E’ constant, we 
obtain 

El d2 Tm+nmll , -0 
65 q 

m+n+l d@ m $- n -{- I 
T Wd I 11; 1 

where fW = 7) rU’. Making the substitutions 
E’ --f E and fW + 7W it can be shown that 
yl/az --f a and y& ~22 -+ /3 so that equation (31) 
is equivalent to the equation for the gray gas, 
equation (7). Therefore, the heat flux is given by 

-q = “,i” L= 2/3 (1 - w) (32) 

TEMPERATURE AND FREQUENCY DEPENDENT 

PROPERTIES. II 

We again maintain the same power law 
dependence on temperature for the absorption 
coefficient and for the thermal conductivity, 
equations (5) and (6). However, for the frc, 
quency dependence we consider a gas with an 
absorption coefficient consisting of a finite 
number of spectral lines superimposed on a 
uniform gray background. The spectral lines 
are assumed to have the absorption coefficient k, 
while the absorption coefficient of the gray 
background is yk (see Fig. 5). This representa- 
tion can be considered to be a model for line 
absorption or an improved model for band 
absorption. 

and the results obtained for the gray gas can 
now be used in the present problem. The n 
above results show that for 7 < 1, it is the 
transparency and not the opacity of the gas that 
is important. The heat flux is primarily due to 
the part of the spectrum with the small absorp- 
tion coefficient T/C which comprises the fraction 

n(V) m?[ ?k,\, jj_.__; i 

(1 - U) of the entire spectrum. I i) 1 

Heat Jlux i---L 
I/, 7,. >/. 1,. 

The heat flux was calculated for the conditions 
“I “L “i 

l 1 = EW = 1.0, Tl = 0.1, Tw = 1.0, w = 0.5, 
11 = 0.1, rn + n = 1. The results are presented 

FrG’ 5’ ‘To, ,,,” u,,,~:u ~,c: 
:quency dependence of absorption coefficient 
-- --2’C-1 -‘-ket fence model (II). 

in Fig. 4. 
IO 

T,=l-0 T=O! CW=t,=l 0 rn+“=, 7’0 I w=o 5 

- 0 Dlffuslorl 
- 0 Boundary IDyer 
- b Modtfled boundary layer 

DifSerential equation 
Making the kernel substitution and taking 

successive differentiations yields the following 
differential equation? 

+ T; (Al + x2 Tw 5) J 
I I ,,~,,,I ! ,,,,,/, ,., ,I 

0 “1 01 1 14 

6 
vc I AvJ2 

FIG. 4. Heat flux for temperature and frequency dependent 
t The approximation s I,” dv ; I,&” Av~ has been 

Y. - A,,/2 

properties I. made. 
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cl2 T4 cl2 ___. - 
’ dP 

v:T4+(1 -$g2 

(34) c yPI + r) (1 - 7) T; z i+!P$ = - h:O) - A;’ 720 E 
i i 

The constants hi and hs and the heat flux q may 
be determined by substituting equation (33) 
into equation (1). The heat flux is given by 

_q =22! 
rl 2’ 

Rather than solve for the general result for 
X1 and Xs we determine hl and Xs for each 
particular approximate solution. 

DQfiision approximation 
When 7w $ 1 and 7 Q, 9 1, equation (33) 

may be approximated by 

h,+ + A;- Q-W E (36) Integrating, we obtain 

where 

h+ _ q2 aT,m+n+l 
1 m +n_tl + rlTf+ rl(rl- KWWz) 

i 

(37) 

A; = 
712a w 

(Tmtn+l_ ptn+l) 

m+n+l 720 1 

32 26 
-q=jz=,+,+1 

(Tz+n+l- Tlm+n+l) 
- 

Tw (39 

Boundary-layer analysis 
When E < 1, equation (33) is of boundary 

layer type. Assuming 7: < O(l), the equation 
for the free stream temperature (E = 0) is 

(40) 

Assuming the contributions from the spectral 
lines to be much smaller than that from the gray 
background in the region away from the walls, 
we expand the free stream temperature in 
powers of the small parameter, Q, that is 

where 

T = T(o) + QT(i, + . . . (41) 

J&s% !+“.A$ 
t 1 (42) 

0 0 

To zeroth order in 0 we have 

(44) 

To this order the effect of the spectral lines is 
omitted in the region away from the walls. 
Therefore, the approximation to the free stream 
temperature given by equation (44) should 
reduce to the equivalent gray gas result with the 
absorption coefficient $c; that is, 

jj’0) 
Cl = 0, c2 = 0, -L 

A’01 
= a(O) and A- = p(O). 

77 T2 

This is confirmed by substituting equation (44) 
into equation (1). For greater accuracy, the 
higher order terms for the free stream tempera- 
ture may be determined. 

The boundary-layer equation is 

1 d4 Tmtntl ds T4 

m+n+l - d[4 -’ dC2 

- (1 - rl) $7 #:6 = 0 (45) 
, 

where $ = s/PA. Integrating this equation 
yields 
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T~fm+?k _ f5tmtn 
a 

- (5+mfn)l(ltm+ n) 
I‘a7n+“+’ 

+ (1 - rl) /_+n+I C $!t dTm+n+l 
i 

RALPH GREIF 

(46) 

The equation for the heat flux is given by 

J 

Modified boundary-layer analysis 
When 7w B 1 but r] 7w < O(1) the previous 

approximations are no longer valid, We define 
a new conduction to radiation parameter, E’, 
with E’ = E/V. Taking the limit of equation (33) 
as 7w -+ co with E’ constant, we obtain 

E’ d2 Tm+ntl Tmtntl E'~; 
-__ 

m+n+l W m+n+l 

-T4+-&&=-$$Tw~ (48) 
i 

where ?w = 71 rw_ The solution for the free 
stream temperature (6’ = 0) is 

The constants Ai01 and hko) are found by sub- 
stituting equation (49) into equation (1). 

The modified boundary layer equation is 

1 d2 Tmtn+l 

m-i-n+1 d[a 
- T” 

where [ = E/(E’)~~~. Integrating this equation 
yields 

S1 (“a,““)a _ [2 S_rl (m + n + l)]lpz 

(T,m+n+l -f, m+n+l)jiip 

The equation for the heat flux is given by 

-- ; P + fwl = (qw - qd - X Wfi CT,) 
i 

- a+Gzi (Tl)] + m+“n”+ 1 

x ( [dT;;+l)l+ (dT;:+l)l 

+ Tm+n+l_ TLmtn+l 
UJ 

I J 

(51) 

(52) 

I 1 l,,Il~ll / III’II 

0 0 31 

FIG. 6. Heat flux for temperkre and frequency de- 
pendent properties II. 
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Heat jlux 
The heat flux was calculated for the conditions 

et = fW = l-0, Tt = O-1, TW = l-0, and 
m + n f 1. The values of vafT,* and AvgjTJ 
were chosen to correspond to the hydrogen 
atom at a characteristic shock tube temperature 
(8400°K) [14, 15, 161. The results are presented 
in Fig. 6. 

A study has been made of the transfer of 
energy due to the combined effects of radiation 
and conduction for a gas with both temperature 
and frequency dependent properties. Approxi- 
mate solutions have been obtained for the heat 
flux and the tem~rature field. The following 
frequency dependent models of the absorption 
coefficient were considered: (1) The gray gas 
model, (2) The picket fence model, and (3) a 
modified picket fence model. In all cases the 
thermal conductivity and the absorption co- 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

R. and M. GOULARD, One-dimensional energy 
transfer in radiant media, Int. J. Heat Mass Transfer 
1, 81-91 (1960). 
L. P. KADANOFF, Radiative transfer within an ablat- 
ing body, 1. Heat Transfer 83, 215 (1961). 
R. VISKANTA and R. J. GROSH, Heat transfer by 
simultaneous conduction and radiation in an ab- 
sorbing medium, J. Heat Transfer 84, 63-72 (1962). 
W. LICK, Energy transfer by radiation and conduc- 
tion, Heat Transfer and Fluid Mechanics Institute, 
14 (1963). 
W. M. ELSASSER, Heat Transfer by infrared aviation 
in the Atmosphere. Harvard University, Mass. 
(1942). 
J. 0. HIRSCHFELDER, C. F. CURTI~,~ and R. B. BIRD, 
Molecular Theory of Gases and Liquids. John Wiley, 
New York (1959). 
I. AMDUR and E. A. MASON, Properties of gases at 
very high temperatures, Ph_v.r. Fluids 1, 370 (1958). 
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M. KROOK, On the solution of equations of transfer, 
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Hopf problems, J. Appl. Phys. 2, 1769-1774 
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efficient were assumed to have a power law 12. 
dependence on the temperature. 
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RBsumb-Cet article considere le probltme du transport d’energie dG aux effets combines du rayonne- 
ment et de la conduction pour un gaz avec des proprietes dependant a la fois de la temperature et de 
la frequence. Le probleme particulier Btudie est le transport d’energie unidimensionnel dun gaz 
absorbant, emetteur et conducteur. Trois approximations pour la dependance en frequence du 
coefficient d’absorption sont examin& en detail: (1) l’approximation du gaz gris, (2) l’approximation 
de la palissade de pique&, (3) une approximation modit%& de la palissade de piquets. En plus, on a 
a suppose que la conductivite thermique et le coefficient d’absorption dependent de la temperature 

selon une loi en puissance. 

Zusammenfassnng-In der Arbeit wird der Energietransport bei gleichzeitiger Strahlung und Leitung 
in einem Gas mit temperatur- und frequenzabhlngigen Stoffwerten untersucht, Speziell wird der 
eindimensionale Energietransport in einem absorbierenden, strahlenden und leitenden Gas betrachtet. 
Ftir die Fr~uen~bh~n~gkeit des Abso~tionsk~~ienten werden drei Naherungen im einzelnen 
untersucht: (1) die Nlherung fiir graues Gas; (2) die Lattenzaunnaherung und (3) eine abgewandelte 
Lattenzaunntiherung. Zusltzlich wird angenommen, dass die therm&he Leitfahigkeit und der 

I bsorptionskoeffizient von der Temperatur nach einem Potenzgesetz abhlngt. 
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AmoTaqWn-B CTaTbe paCCMaTpHBaiOTCJI BOIipOCLI lle~D?llOC~ 3Ht?plWli I3 l,e:l)‘nbTaTt: c:OH- 

MWTHOI’O @tiCTBHJI KGIyYeHHJI 12 TeII~IOlipOBO~HOCTl~ IIphi CBOiiCTBaX l’a3013, :3aBMCJl~iIX OT 

TeMIlepaTypbI If YaCTOTbI. PaCCMOTpeHa ‘l~(‘TilHR :Ia~aW OAHOMf?pHOI’O IEpeHOCa 3Hepl’IIki a;iJf 

nornoiqalo~i~x, Ilany~iaio~six II ~~po~~o;lm~~iiX cpe~. nOflpOriII0 p~KMOT~,eiII>l T[‘Il ll,“‘- 

6JiI0KtieHlWl HJIJI :3aB&iCMMO(‘TIf ‘I;IC’TOTI>I OT I~O:~~~l~lIiIl~l~~iiT~ IlOI’.?OII~HlIEtJl : 1 II~~llr,,~l~it~f~llll~~ 

Ct?pOrO I’;138 ; 2. CTylICHWTOt! ll~‘L’~.Wli”lIlL(! ; 3. ~l~ncl~~~Ill~lrpon~lillot~ ~‘TyIictl’laTot! ll~,ll- 

6jIi4EwIiIfe. KpOMc TOI’O, IIpIl1iJIT cT~~IIt?ltllOii :l~tliOlI :l;Ilil1~‘I1MOCTLl liO~~l~l~~llll~ll~~llTOll 1’~‘11.‘1011~)0- 

liO,~llOCTII ,I llOI’JIOii~f’HIIlI OT Tt’.Ol11~~~~aT~~~l,I. 


