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ENERGY TRANSFER BY RADIATION AND CONDUCTION
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Abstract—This paper considers the problem of the transfer of energy due to the combined effects
of radiation and conduction for a gas with both temperature and frequency dependent properties.
The particular problem studied is the one-dimensional energy transfer of an absorbing, emitting
and conducting gas. Three approximations for the frequency dependence of the absorption coeffici-
ent are considered in detail: (1) the gray gas approximation, (2) the picket fence approximation and
(3) a modified picket fence approximation. In addition, the thermal conductivity and the absorption
coefficient are assumed to have a power law dependence on the temperature.
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Avq, width of ith spectral line;
vi, radiation frequency at center of ith
spectral line.
Superscripts
0), constants evaluated as & - 0;
+, constants evaluated as 7, > o0;
0, black-body radiation.
Subscripts
I, left wall;
w, right wall;

1 if left wall is being considered
w if right wall is being considered;
per unit frequency.
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INTRODUCTION

HiGH temperature problems require the under-
standing of the combined effects of radiation,
conduction and convection. The study of these
interactions has attracted much attention [1-4],
and are quite difficult due to the complexity of
the basic equations. Lick [5] has proposed
approximate analytical techniques for the prob-
lem of the transfer of energy due to the combined
effects of radiation and conduction which give
good agreement with the numerical solution of
the original non-linear integro-differential equa-
tions.

Two approximations for the absorption
coefficient were considered in detail in [5]: (1)
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the gray gas approximation, the absorption
coefficient assumed constant, and (2) the picket
fence model, the absorption coeflicient assumed
to consist of an infinite number of spectral lines
of uniform height uniformly distributed and
superimposed on a gray background. In both
cases the absorption coefficient and the thermal
conductivity were assumed independent of
temperature. The purpose of this investigation is
to show that the procedures of [S] may be
extended to gases having temperature as well as
frequency dependent properties. The thermal
conductivity and the absorption coefficient are
assumed to have a power law dependence on the
temperature. The two cases previously cited for
the frequency dependence of the absorption
coeflicient are considered. In addition, the case
when the frequency dependence of the absorp-
tion coefficient consists of a finite number of
spectral lines superimposed on a gray back-
ground is also treated in detail.

ONE-DIMENSIONAL ENERGY FLUX

We consider an absorbing, emitting and con-
ducting gas of variable temperature that is
bounded by two infinitely plane parallel walls (see
Fig. 1). The walls diffusely emit, absorb, and
reflect radiation and are kept at constant tem-
peratures 771 and T, with emissivities ¢; and ey,

The equation for the total energy flux due to
radiation and conduction is [2, 5]

ar* T .
q* = — /\*a‘j; + 2m J _[ IDEx (7 — 1)
0 0
drdv— 2 | | I9Es(t— %) dtdv
0 Ty Y (1)

+2 f q:l E3 (Tj) dv
0

- ]": q°, Es (<%, — ) dv

J

where 1° is the black body spectral intensity. The
radiative spectral flux leaving the walls is given by

gy =eaqd(T)+ (1 — )
< Rr | D@OE@d+2¢, B @
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FiG. 1. Diagram of problem.
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When the absorption coefficient can be
approximated by the separable product,
k(v, T) = a(v) B(T), equation (1) may be ex-
plicitly integrated with respect to the physical
length variable, y, yielding [5]
H(T*) — HT1) — € [$(Tw) — $(T1)] =

~

o Tyw* 70

— B3|, —t| + € Es (7}, — 1)} drdv

o
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where

$T) = 'J”" A(T)B(T)dT,
= J BIT()] dy) IB [T()] dy.

Equations (2), (3) and (4) specify the complete
problem.

TEMPERATURE DEPENDENT PROPERTIES
Assume the absorption coefficient is given by a
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power law dependence on the temperature with
no dependence on the frequency so that

kiko = (T*[T5)y™ (%)
and, similarly, for the thermal conductivity
Ao = (T*/T)m. (6)

In general the actual temperature dependence
can be adequately approximated by equations
(5) and (6), particularly for moderate tempera-
tures [6, 7, 8, 9].

We note that even the crudest approximations
for the absorption coefficient and the thermal
conductivity, namely, constants independent of
both the frequency and the temperature, require
numerical methods for solution. To correct this
difficulty, the exact kernel E» (¢) is approximated
by the exponential function, 3/4 e=3¢/2, which
has the same area and the same first moment
as the exact kernel [5, also see 10, 11]. Making
this substitution in equation (4) and using
equations (5) and (6), successive differentiations
of the resulting equation yield the differential
equation,

€ d2 Tm+n+l ere Tm+n+l
m+4+n+1 dég —mui}—n+l
—T4=—a—fBrypé¢ (D)
where
3 Aoko

=it ®
and is a measure of the importance of the heat
conducted in comparison to the heat radiated.

The constants « and B are determined by
substituting equation (7) into equation (1) to
give

7
a = 2+ {qw—{-(l-i—‘rw)(ﬂ
8
Y e - o)
m+n+ - —
Tpine 4 (F—), — A )
dTm+n+1
(5 )} J

893
— 1 ]
B=gi o
8
— m+n+l ___ m+n+l
+m+n+1[T it Tpnt - (10)
dTm+n+1 dTm+n+l
Fa )
and
—q =28 (11)

where 8 = er2. Thus, a, 8 and the heat flux ¢
may be dlrectly determlned once the derivatives
of the temperature and the radiative heat
fluxes at the two walls are known.

Boundary-layer analysis

When radiation is the dominant mode of heat
transfer, ¢ < 1, Equation (7) is of boundary-
layer type [12]. Assuming 72 < 0(1), that is
8 <€ 1, the free stream solution (e = 0) is

Ti=f4=0a® 4 BO 7, ¢ (12)

where a® and B are the values of « and B
obtained for 6 = 0.

In the vicinity of each wall a boundary layer is
present due to conduction heat transfer. The
boundary-layer equation is obtained by stretch-
ing the length variable in equation (7) such that
the most highly differentiated term is of the
same order of magnitude as the largest terms in
the equation. This is obtained with the trans-
formation £ = £/€/2 and the equation becomes

1 d27rmin+l
mtn41 d&
=— a® — BO) 1, £ = — f4 (13)

where the subscript a is / for the boundary layer
at the left wall and w for the boundary layer at
the right wall. Integrating this equation and
matching the free stream and boundary-layer
solutions yields the desired derivative

'm+n+1
5 (A7) i+t

m+n+1
S+m+4n

__ f4 L+m+n _ fl+m+n 12
fa g Jarmrm)

(TE*"“‘” — fa5+m+n) L (14)

o
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Power series expansion

When conduction is dominant, ¢ > 1, we
approximate the solution by the power series

Tmintl —qgo + a1 € + az &2 -+ az & (15)
anticipating that the temperature will be a
slowly varying function of £. The coefficients,

an, are determined by substituting equation (15)
into equation (7).

Diffusion approximation
When the medium has a large optical depth,
mw > 1, equation (7) may be approximated by

ST min+l 4 . . 16
rT—l:B—%tl_{_T =+at + B 1y ¢ (16)
where
STm+n+l
ot 4
at= b+ T (17)
g 5 Tmmn—gpme
m+n—+1 Tw
T4_ TA
4L (19)
Tw
and
28 (T;n+n+1 — Tlm+n+1)
TS mEal
T — T4
+22 2 9)
Tw

These equations represent the diffusion approxi-
mation for both radiation and conduction.

Heat flux

The heat flux was calculated for the conditions
ag=ey=10, T;=01, T,=10, and
m -+ n =1, by the boundary-layer analysis,
power series expansion and diffusion approxi-
mation methods. The results are presented in
Fig. 2. In addition, the temperature field can be
calculated.
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FiG. 2. Heat flux for temperature dependent properties.

TEMPERATURE AND FREQUENCY DEPENDENT
PROPERTIES. 1

We maintain the same power law dependence
on temperature for the absorption coefficient
and for the thermal conductivity, that is,
equation (5) and (6). In addition, for the fre-
quency dependence we consider a gas with
an absorption coefficient consisting of an infinite
number of spectral lines superimposed on a
uniform gray background. The spectral lines are
assumed to have an absorption coefficient k
and cover a fraction w of the spectrum, while
the absorption coefficient of the gray back-
ground is nk (see Fig. 3). This model can be
considered to be an approximation to the
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FiG. 3. Frequency dependence of absorption coefficient
for picket fence model (I).
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absorption of a band spectrum; see, for example

[6].1

Differential equation

Making the kernel substitution and taking
successive differentiations yields the following
differential equation

€ dATmndl (1 4 o2) er? )
m4n+1 d&¢ m4+n+1
d2 Tm+n+l 7)2 e'r& Tm+n+l L (20)
déz m+n+1
d274
=a g e T+ O+ wa)J

a=—wtn(l—0) a=yl-—o+roe

The constants y; and y2 and the heat flux ¢ may
be determined by substituting equation (20)
into equation (1). The heat flux is given by

2v2
—9=z (21)

Rather than solve for the general result for
y1 and y2 we determine y1 and yz for each
particular approximate solution by substituting
the corresponding solution into equation (1).

Diffusion approximation
When 7 > 1 and y7y > 1, equation (20) may
be approximated by

3.,72Tm+n+1
m‘f‘ axTi=ytr +yf € (22)
where
2 STm+n+l
" = ;n‘:*_*; Tt e T (23)
72+ = i) (T:Un+n+1 — Tlm+n+1)
m+n+1 Tw
T4
+aTe =T o
Tw
28 (T'z)n+n+1 — Tim+n+1)
4= m-tn-1 Tw
T4 — T4
n Tw

t Plass [13] has studied various representations of the
absorption coefficient of a band spectrum and made
further extensions.
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Boundary-layer analysis

When radiation dominates, ¢ < 1, the dif-
ferential equation, equation (20), is of boundary-
layer type. Assuming 72 <C O(1), the equation
for the free stream temperature variation
(e =0)is

d2T4
ai *d*g

Integrating, we obtain

— az 1'2 T4=— 7'2('}/(0)

(O) Tw f) (26)

YO O
Ti=fi= + 'r—{—bl e+ 4 bpeteT
@7

where p? = az/ay, ¥\, ¥, b1 and b; are found
by substituting equation (27) into equation (1).
The boundary-layer equation is
1 daTmtn+l dz T4
m+n+1  d& dé
where £ = £/€12. Integrating this equation
yields
dTm+n+1
8(— ) =R8ay(m+n+ D2
d’T' a
T2+m+n _fa5+m+n
I6+m+mm+m+m

1
_fu4 (Ta1+m+n __fa1+m+n)] 2

=0

(28)

— a1

T

L (29)

~

The equation for the heat flux is given by

—%[2(1+n)+n7w]=(tz1+?) ]

(Gw—q) —a1 (f3— 1)
dTm+n+1)

+ﬂ§m{(l + ) [(T

dTm+n+1
(%)

+ p (Tm+n+l — Tlm+n+1)}

L (30)

7

Modified boundary-layer analysis

When 7, > 1 but % 7 << 0(1), the previous
approximations are no longer valid. We define
a new conduction to radiation parameter, €',
where € = e/az ~ €/n. Taking the limit of
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equation (20) as 7 — o0 with €' constant, we
obtain

€ d2 7m+n+l e 72
_ W Tmintl
m-tn+1 dégz m+n -+
Yi Y2
T4 =
T a» 77‘12 Tu f (31)

where %y = % 7. Making the substitutions
€ >e€ and #,—> 7w it can be shown that
yi/az — a and ya/n as — B so that equation (31)
is equivalent to the equation for the gray gas,
equation (7). Therefore, the heat flux is given by

2
~g=" =B -w ()
and the results obtained for the gray gas can
now be used in the present problem. The
above results show that for » < 1, it is the
transparency and not the opacity of the gas that
is important. The heat flux is primarily due to
the part of the spectrum with the small absorp-
tion coefficient nk& which comprises the fraction
(1 — w) of the entire spectrum.

Heat flux

The heat flux was calculated for the conditions
ag=ep=10, T} =01, T, =10, w =075,
1 = 0-1, m 4 n = 1. The results are presented
in Fig. 4.

10

- 7,210 7201 eyrq:l0 minzl m:01 w:05
o Diffusion
o Boundary layer

A Modified boundary layer

T 111

.
Tyt =1

o

T

O e e e

1

P
—

e e O ——
a A

_ql
0'7["‘3

0!

Ilkl'ﬂi
L

1

1ot ol oyl
[sR1 1
)

FIG. 4. Heat flux for temperature and frequency dependent
properties 1.
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TEMPERATURE AND FREQUENCY DEPENDENT
PROPERTIES. 1II

We again maintain the same power law
dependence on temperature for the absorption
coefficient and for the thermal conductivity,
equations (5) and (6). However, for the fre-
quency dependence we consider a gas with an
absorption coefficient consisting of a finite
number of spectral lines superimposed on a
uniform gray background. The spectral lines
are assumed to have the absorption coefficient 4,
while the absorption coefficient of the gray
background is nk (see Fig. 5). This representa-
tion can be considered to be a model for line
absorption or an improved model for band
absorption.
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Fi1G. 5. Frequency dependence of absorption coefficient
for modified picket fence model (I1).

Differential equation

Making the kernel substitution and taking
successive differentiations yields the following
differential equationt

€ da Tm+n+1
m-n+1  de
. d2 Tmin+tl
w dfz )

L G

m-+n-+1
772 ET; Tmin+l

mitn+41
dz T4 Y ds

:ﬁ’dgz—“ﬁTZva+(l “n)az{g
Xt (=) By
+ 22 (A Ao wd) )

> (33)

v Av,f2
t The approximation | 1,dy = 1,° Av; has been
v, — Av /2

made.



ENERGY TRANSFER BY RADIATION AND CONDUCTION

where

=72 CITROTy)
v o cEexp (hwi/kT;T) —

The constants A\; and A and the heat flux g may
be determined by substituting equation (33)
into equation (1). The heat flux is given by

—g = —5- 35
9= (3%
Rather than solve for the general result for
A1 and A we determine A; and Az for each

particular approximate solution.

Diffusion approximation
When 7, > 1 and %7 > 1, equation (33)
may be approximated by

72 8 Tm+n+l
m+n+1+nT +n(n—1)2¢

AN+ Af T € (36)
where

72 § Ty +n+l

F= a1t G- D@
(37)
. 728 (Tﬁ*”’*l — T:n+n+1) 1
)\2 m + n + 1 Tw
— T4 —
+7}( w TL)+"I("7 1). r(38)
Tw Tw
<2 [0 (Tow) — 2 (T)] )
2k 28 )
1= “minii
Tm+n+l __ Tm+n+1 4 __
Tw Y Tw
(=1
2 ; 0 (T,
’7 vt v’l( l)] J

Boundary-layer analysis

When € < 1, equatlon (33) is of boundary
layer type. Assummg 2 << 0(1), the equatlon
for the free stream temperature (e =0)is

897
d2 T4 a2
i dgz'_"ngT + 1 - ﬂ)d—fz
S = D B = AP AP g 8
i 1 (40)

Assuming the contributions from the spectral
lines to be much smaller than that from the gray
background in the region away from the walls,
we expand the free stream temperature in
powers of the small parameter, £, that is

T=Tyw+8RTaq + .. D
where
m 2h {vi\3 Ay
elnw e
To zeroth order in 2 we have
d2 T4
g BT = -0 = Wt @)
Integrating, we obtain
AP A
T4 = -—+ 77- + e Fczett (44)

To this order the effect of the spectral lines is
omitted in the region away from the walls.
Therefore, the approximation to the free stream
temperature given by equation (44) should
reduce to the equivalent gray gas result with the
absorption coefficient nk; that is,

A0 NG
c1=0, cg =0, = = a® and % = O,
i 7

This is confirmed by substituting equation (44)
into equation (1). For greater accuracy, the
higher order terms for the free stream tempera-
ture may be determined.

The boundary-layer equation is

1 deTmnl g2 T4
m+n+1 g " déz
— — 0 -
(=g Bi=0 @9

where & = £/€l’2,
yields

Integrating this equation
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-

+n+l
5 (dTZT" )a —R28(m+n+ D2

Ta5+m+n — fas+m+n
{”6+m+mm+m4m

+ (1 —_— ,,7) }MMHE ‘l,o drm+n+l L

fa™trtl g

— ,,’f: (le+m+n _f}+m+n)
— (1= ) [ ¢ (fa)]

(T(} +mt+n_ f(l1+m+n)}l/2 J

The equation for the heat flux is given by

~

— S0+ )+ 77l = 0+ D (g0 — )
—alfe =S — 10—

3 W ) — S U+
(e [(4500) 4 (475))

+ 7 (T'Zn +n+l Tlm +n+1)}

" @7

Modified boundary-layer analysis

When 7 » 1 but 5 7 < 0(1) the previous
approximations are no longer valid. We define
a new conduction to radiation parameter, ¢,
with €' = e/n. Taking the limit of equation (33)
as 7, — o0 with € constant, we obtain

e d2 Tm+n+1 € f120 Tm+n+l
m+n+1 dg T m+nan+1
A As
—~ T4 4 Sy, = —f—;mfm&

where #y = n 7w. The solution for the free
stream temperature (¢’ = 0) is

)\(0) AL
=2 = T 49
The constants A® and Ag’) are found by sub-
stituting equation (49) into equation (1).
The modified boundary layer equation is

RALPH GREIF

1 dz2 Tmn+1

- — e T4
m+4+n+1 dz
Ao e
T == (0)

where € = £/(¢')V2. Integrating this equation

(46) yields

-

dTm+n+1
&7 (_71%“)@ = [28n(m + n+ D2
T5‘+m+n — Ta§+m+1z,
{(5"+ m -+ n)/(1 + m -+ n)

’[‘ﬂm+ﬂ+l
- f Z ‘r/’(v)z d

fam™rir g

— 2 — 2¢ (f2)]

r (51

Tm+n+l

(T;n+n+1 _fam+n+1)} &

J

The equation for the heat flux is given by

TR+l =0 — ) — Z [ (T)

oy
— )] + -
¢yi( )] m + n + 1 52
dTm+nr+l dTrm+n+l } ( )
X = + ”
d’T w d‘l' 1
+ Tm+n+1 _— Tm+n+1
w 11 J
10
; Ty =0 7=01 e4=€=10 minzl =01
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FiG. 6. Heat flux for temperature and frequency de-
pendent properties I1.
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Heat flux

The heat flux was calculated for the conditions
€ = € = 10, T, =01, Tp=10, and
m + n-+ 1. The values of v/T; and Aw/Ty
were chosen to correspond to the hydrogen
atom at a characteristic shock tube temperature
(8400°K) [14, 15, 16]. The results are presented
in Fig. 6.

SUMMARY

A study has been made of the transfer of
energy due to the combined effects of radiation
and conduction for a gas with both temperature
and frequency dependent properties. Approxi-
mate solutions have been obtained for the heat
flux and the temperature field. The following
frequency dependent models of the absorption
coefficient were considered: (1) The gray gas
model, (2) The picket fence model, and (3) a
modified picket fence model. In all cases the
thermal conductivity and the absorption co-
efficient were assumed to have a power law
dependence on the temperature,
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Résumé—Cet article considére le probléme du transport d’énergie dii aux effets combinés du rayonne-
ment et de la conduction pour un gaz avec des propriétés dépendant 2 la fois de la température et de
la fréquence. Le probléme particulier étudié est le transport d’énergie unidimensionnel d’un gaz
absorbant, émetteur et conducteur. Trois approximations pour la dépendance en fréquence du
coefficient d’absorption sont examinées en détail: (1) approximation du gaz gris, (2) I'approximation
de Ia palissade de piquets, (3) une approximation modifiée de la palissade de piquets. En plus, on a
a supposé que la conductivité thermique et le coefficient d’absorption dépendent de la température
selon une loi en puissance.

Zusammenfassung—In der Arbeit wird der Energietransport bei gleichzeitiger Strahlung und Leitung

in einem Gas mit temperatur- und frequenzabhingigen Stoffwerten untersucht. Speziell wird der

eindimensionale Energietransport in einem absorbierenden, strahlenden und leitenden Gas betrachtet.

Fir die Frequenzabhingigkeit des Absorptionskoeffizienten werden drei Nidherungen im einzelnen

untersucht: (1) die Niaherung fiir graues Gas; (2) die Lattenzaunnidherung und (3) eine abgewandelte

Lattenzaunndherung. Zusitzlich wird angenommen, dass die thermische Leitfihigkeit und der
. bsorptionskoeffizient von der Temperatur nach einem Potenzgesetz abhingt.
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AnHOoTAanMA—DB CTAaThe PACCMATPUBAIOTCA BOIPOCH IIEPEHOCA YHEPIUH B PE3YILTATE COB-
MECTHOTO MEiCTBMSA HBIYYEHHMA M TEILIONPOBOIHOCTH IPU CBOMCTBAX rasoB, 3ABUCHIIMX OT
TeMIIEPATYPHl ¥ YaCTOTH. PaccMoTpeHa yacTHAA 3agaua OHOMEPHOI'O IIepeHoca 3HePru JIiIs
TIOMJIONIAIOIMX, HAJAYYaHUX M [PpoBOIAIMK cpef. IogpofHO paccMOTpeHsl TpH Upit-
OMIKEHUA U BaBUCUMOCTH YACTOTLL OT KoobQuimenta moriaomenusd : 1. npulamkenue
ceporo rasa; 2. CTYHeHUaroe UpHGIUAcHne; 3. MOLUQUIMPOBAHHOE CTYIUEHYATOC [1pH-
Oauszkenue, Kpome TOro, IPUHAT CTCHEHIOH BAKOH 3aBUCHUMOCTH KODPPUIIHEHTOR TCILIOTPO-
BO;JUOCTH 11 HONIONICHUST OT TeMIEPATYPLL.



